pu)/ox =.[puly; 8(ov)/ 8y = [pvly;
8u/0x = uy; p = (p—p;)/(pjui/2)

Indices
w is the properties at walls:
e is the properties at outer:boundary of boundary layer;
act is the properties obtained through the solution of the boundary-layer equation;
* is the properties calculated on the basis of the controlling temperature;
i is the properties of incoming flow;
in is the incompressible fluid.
LITERATURE CITED
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QUASISTEADY APPROACH IN CALCULATIONS FOR
CONVECTIVE HEAT TRANSFER

E. E. Prokhach UDC 536.242

An equation is derived for determining the limits of applicability of the quasisteady approach in
thermal calculations involving the cooling of metal plates in liquids and gases.

Under certain conditions of convective heat transfer, a boundary layer rapidly reacts to external per-
turbations and manages to change when there are changes in either the temperature of the object in the flow,
the pressure at the inlet to the channel, or other parameters. In this case, "instantaneous steady states" exist
at each time, and the steady-state approach can be used to determine the rate of the process. We call pro-
cesses occurring under such conditions "quasisteady. "

Whether a particular type of heat transfer can be treated as quasisteady is of both theoretical and prac-
tical interest. The use of equations found for the steady-state conditions substantially simplifies the calcula-
tions. There has been less study of unsteady heat-transfer processes, and dimensionless equations for the
heat-transfer coefficients are not available for most unsteady processes.

The usual approach is to treat a heat-transfer process as quasisteady if the ratio of the Nusselt numbers
found experimentally and calculated on the basis of the equations corresponding to the steady-state regimes is
approximately unity [1-3]. In certain cases, the "condition for a quasisteady system"is assumed to be the
approximate equality of the steady and unsteady heat fluxes [4, 5].

Attempts have been made to find the conditions under which the equations found for the steady-state
conditions can be applied to unsteady heat-transfer processes. Comparing the heat fluxes calculated for the
steady and unsteady regimes during the heating and cooling of a vertical plate, Sparrow and Gregg [4] found
that the process can be treated as quasisteady under the condition

AT T '
xT [—g—(m] < 0.033,
where

d(AT)

AT =T —Tu; AT =
dz
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An analogous approach was taken in [6] in the case of heat transfer with forced convection. In this case
the condition for the applicability of the equations of steady-state convection is

2 ;7 ’
.}_ pC};to (-z_o — 1 -——U ) —-»O
6 g0 ty v
Here
. dt dv
=T,—T 5 to == u M U o e,
fo 0 vt dt dt

The various aspects of the problem of unsteady heat transfer are studied in most detail in [3], where
the experimental results were converted to the form

i 0,16K5%%

Nu g
for comparison with the data of other investigators. Here

t ot &
Kp, =K, -2.1073, K =%
P tq p o (tp—i)am
In the case 0.16 Kgi‘l = 1 the process is quasisteady.

Interestingly, in most of the cases which have been treated it is necessary to know the time evolution of
the temperature of the object in order to resolve the question of whether the equations found for the steady-
state conditions can be used. However, the temperature of the object is generally unknown.

We believe that it is preferable to write the ratio Nuy/Nugtas afunction of the governing dimensionless
numbers constructed from the properties substantially affecting the heat-transfer process but which are inde-
pendent of the mechanism of this process. Among these parameters are the geometric and thermophysical
properties of the system and the initial and boundary conditions.

As an example, we consider unsteady heat transfer during the cooling of a thin vertical plate in an un-
bounded medium. On the basis of physical considerations it is understandable that the ratio Nuy/Ngtdepends
on the thermophysical properties of the plate and the medium at the initial time (cps Aps Pps Cms Ams Ppms By V), the
boundary and initial conditions (tme, tpg), the geometric properties of the plate (6 and L), the acceleration due
to gravity g, and the time 7,

We thus write

NLIu__
N Ff(P

y P €

pm’m

,p,ﬁv,éLtm, po,g,r)

Assuming a power-law functional relationship among these properties, and using the recommendations
of theory of dimensionality, we find the following equation, making use of the analysis of [8]:

Nu
\u st

== A (Gr,Pro’®) (I—D %) Fo." )

The coeificient A and the exponents in Eq. (1) are to be determined experimentally. The plate is heated
by briefly applying an electric current; then the plate cools because of free convection and radiation. The maxi-
mum plate temperature is 200°C, and the heating time is 0.4-1 sec. We study heat transfer of the plate in air,
water, kerosere, and transformer oil. The plates are made of German silver and type 1Kh18N9T steel; the di-~
mensions of the working part of the plate are 0.14 x 0.1 X 0.35-10"% m

The copper holders of the plate support also serve as current leads. The lower junction of the support
is flexible to allow for elongation of the plate during heating,.

The plate is heated by alternating current from a welding transformer (current of 800-1000 A; voltage
of 42 V). Electrical and electromechanical timers are used to set and accurately measure the heatmg time.
The plate temperature is measured by a copper—Constantan thermocouple (the diameter of the copper wire is
0.15 mm and that of the Constantan wire is 0.10 mm) and a single-point EPP-09M electronic potentiometer.

At the lower part of the plate is a horizontal isothermal shield, which shields against effects of the cur-
rent leads. The position of the shield and the working thermocouple was chosen after preliminary experiments,
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cbntrol measurements of the temperature at various points along the height of the plate, and estimates of the
influence of end effects through a calculation of a 2IGL-10 hydrointegrator.

For the experiments on the cooling of plates in liquids, we use a 60-liter tank of rectangular cross
section fitted with windows.

The experiments were carried out by V. P, Pershin, M. A. Fadeev, and the author. The experimen-
tal results show that the Nusselt numbers for air are the same as those calculated from the equations for
steady-state conditions, while those for water, oil, and kerosene are considerably lower. An analogous re-
sult was found by Sidorov [1]. In [3, 4] the ratio Nuy/Nugt turned out to be larger than one; it was shown in [5]
that this ratio can be either smaller or larger than one, depending on the heat-transfer conditions and the direc-
tion of the heat flux.

The experimental results were treated by the method of least squares. The experimental data were
approximated by a straight line, whose equation, calculated according to [7], is

K =0.07 -+ 104 N, @)
where
Nuy 1 0.5 im O \015 apt
K= ;. — = (Gr,Pry")%3 { Fo —) ; Fo= —om,
Ny N ) (\ wp L 5

Equation (2) holds over the following ranges:
Gr, = 1.8-107+1.0-10% Pr, = 0.722+200; Fo =5.0+5.9-10%

—?“i“ =21.1074-3.8-107%
Ap
For the experiments with water, the value of K lies in the range 0.15-0.20; for oil it lies in the range
K = 0.25-0.5; and for kerosene it lies in the range K = 0.3-0.7. Only in the experiments on the cooling of plates
in air do we find values of K approximately equal to one.

These results show that équations like (2) can be used; the use of these equations permits the engineer
to determine whether a given process is quasisteady without carrying out special experiments. These results
‘also confirm the hypothesis that the heating and cooling of objects in air can be assumed quasisteady over the
temperature range occurring naturally.

NOTATION

is the coordinate (the x axis is along the plate);

is the temperature of unperturbed medium;

is the temperature of main flow (beyond the boundary layer);

is the temperature of the surface in the flow, which is constant over time;
is the heat flux found from the steady-state equations;

is the velocity of main flow;

is the coefficient, equal to 1/2 for laminar flow and 1/5 for turbulent flow;
is the diameter;

is the specific heat;

is the thermal conductivity;

is the density;

is the thermal-expansion coefficient;

is the kinematic viscosity;

is the plate thickness;

is the plate length;

is the acceleration due to gravity;

is the time;

, n, p,r are the constants.

ERENl

PR HOR D Yo g <

Indices:

P are the properties of plate;
m are the properties of medium,
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CALCULATION OF THE INTENSITY OF ELECTROMAGNETIC
FIELDS OF THERMAL MICROWAVE DETECTORS AT
HIGH TEMPERATURES, 1II

A, M, Andrusenko, V. F, Kravchenko, UDC 621,372.8:536.21
and V. A, Solodukho

The second moments are found for the spectral amplitudes of the thermal electromagnetic
field of a dielectric inhomogeneity of complicated geometry heated to a temperature T,

The second moments of the spectral amplitudes of the thermal field of a dielectric structure with an
arbitrary geometry consisting of steps and rods can be determined on the basis of the method of the generalized
scattering matrix and {1, 2]. Specifying the temperature dependence €j(T) of the dielectric constant of step j,
we extend this method to the solution of analogous problems incorporating a temperature gradient in the in-
homogeneities. Choosing as a basic inhomogeneity a dielectric inclusion of finite length, we can reduce the
number of calculation procedures to a level about 2" times lower than that for a semiinfinite step (here n is the
number of elements in the structure selected).

1. Dielectric Inhomogeneity of Finite Length

in a Waveguide

We seek a solution of the problem of the diffraction of an Hy, wave by a dielectric inclusion of bounded
length in a rectangular waveguide (Fig. 1a) by the method of [1]. We make use of the symmetry of the inhomo-
geneity with respect to the plane z = d/2. We divide the incident field into parts of even and odd parity. This
problem is reduced to two equivalent problems. The structure of the first problem is shown in Fig. 1b, where
there is an electrical wall in the plane z = d/2. By placing a magnetic wall in the same plane, we find the geom-
etry of the second problem. We denote by Rr"np and R;rnp the amplitudes of the harmonics of the waves re-
flected in region A, which are found through a solution of these two problems. According to the superposition
principle, the amplitudes of the wave harmonics reflected from a dielectric inclusion of bounded length are

Rpp = (Rip — Rup)/2,
and the amplitudes of the harmonics of the transmitted waves are

Tmp = (R:Tw - R;l-p)/z
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